Model-based control of intelligent traffic networks
نویسندگان
چکیده
Road traffic networks are increasingly being equipped and enhanced with various sensing, communication, and control units, resulting in an increased intelligence in the network and offering additional handles for control. In this chapter we discuss some advanced model-based control methods for intelligent traffic networks. In particular, we consider model predictive control (MPC) of integrated freeway and urban traffic networks. We present the basic principles of MPC for traffic control including prediction models, control objectives, and constraints. The proposed MPC control approach is modular, allowing the easy substitution of prediction models and the addition of extra control measures or the extension of the network. Moreover, it can be used to obtain a balanced trade-off between various objectives such as throughput, emissions, noise, fuel consumption, etc. Moreover, MPC also allows the integration and network-wide coordination of various traffic control measures such as traffic signals, speed limits, ramp metering, lane closures, etc. We illustrate the MPC approach for traffic control with two case studies. The first case study involves control of a freeway stretch with a balanced trade-off between total time spent, fuel consumption, and emissions as control objective. The second case study has a more complex layout and involves control of a mixed urban-freeway network with total time spent as control objective. B. De Schutter Delft Center for Systems and Control & Marine and Transport Technology, Delft University of Technology, e-mail: [email protected] H. Hellendoorn, M. van den Berg, S.K. Zegeye Delft Center for Systems and Control, Delft University of Technology, e-mail: {j.hellendoorn,monique.vandenberg,s.k.zegeye}@tudelft.nl A. Hegyi Department of Transport & Planning, Faculty of Civil Engineering and Geosciences, Delft University of Technology, e-mail: [email protected]
منابع مشابه
User-based Vehicle Route Guidance in Urban Networks Based on Intelligent Multi Agents Systems and the ANT-Q Algorithm
Guiding vehicles to their destination under dynamic traffic conditions is an important topic in the field of Intelligent Transportation Systems (ITS). Nowadays, many complex systems can be controlled by using multi agent systems. Adaptation with the current condition is an important feature of the agents. In this research, formulation of dynamic guidance for vehicles has been investigated based...
متن کاملDeveloping a Model of Heterogeneity in Driver’s Behavior
Intelligent Driver Model (IDM) is a well-known microscopic model of traffic flow within the traffic engineering societies. While it is a powerful technique for modeling traffic flows, the Intelligent Driver Model lacks the potential of accommodating the notion of drivers’ heterogeneous behavior whenever they are on roads. Concerning the above mentioned, this paper takes the lane to recognize th...
متن کاملTraffic congestion control using Smartphone sensors based on IoT Technology
Traffic congestion in road networks is one of the main issues to be addressed, also vehicle traffic congestion and monitoring has become one of the critical issues in road transport. With the help of Intelligent Transportation System (ITS), current information of traffic can be used by control room to improve the traffic efficiency. The suggested system utilize technologies for real-time collect...
متن کاملCluster Based Cross Layer Intelligent Service Discovery for Mobile Ad-Hoc Networks
The ability to discover services in Mobile Ad hoc Network (MANET) is a major prerequisite. Cluster basedcross layer intelligent service discovery for MANET (CBISD) is cluster based architecture, caching ofsemantic details of services and intelligent forwarding using network layer mechanisms. The cluster basedarchitecture using semantic knowledge provides scalability and accuracy. Also, the mini...
متن کاملNormalized Model of Traffic Light Traits Based on Colored Pixels
Nowadays, because of the growing numbers of vehicles on streets and roads, the use of intelligent controlsystems to improve driving safety and health has become a necessity. To design and implement suchcontrol systems, having information about traffic light colors is essential. There are the wide variety oftraffic lights in terms of light intensity and color. Therefore it seems that design and ...
متن کاملThe Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways
The performance of many traffic control strategies depends on how much the traffic flow models are accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive loop d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012